\qquad
\qquad
\qquad

Integrated Math 3

Chapter 6 Section 1 Study Guide and Intervention

Logarithms and Logarithmic Functions

Logarithmic Functions and Expressions

Definition of Logarithm with Base b	Let b and x be positive numbers, $b \neq 1$. The logarithm of x with base b is denoted $\log _{b} x$ and is defined as the exponent y that makes the equation $\mathrm{b}^{y}=x$ true.

The inverse of the exponential function $y=b^{x}$ is the logarithmic function $x=b^{y}$. This function is usually written as $y=\log _{b} x$.

Example 1: Write an exponential equation equivalent to $\log _{3} 243=5$.
$3^{5}=243$
Example 2: Write a logarithmic equation equivalent to $6^{-3}=\frac{1}{216}$.
$\log _{6} \frac{1}{216}=-3$
Example 3: Evaluate $\log _{8} 16$.
$8^{\frac{4}{3}}=16$, so $\log _{8} 16=\frac{4}{3}$.

Exercises

Write each equation in exponential form.

1. $\log _{15} 225=2$
2. $\log _{3} \frac{1}{27}=-3$
3. $\log _{4} 32=\frac{5}{2}$

Write each equation in logarithmic form.
4. $2^{7}=128$
5. $3^{-4}=\frac{1}{81}$
6. $\left(\frac{1}{7}\right)^{3}=\frac{1}{343}$
7. $7^{-2}=\frac{1}{49}$
8. $2^{9}=512$
9. $64^{\frac{2}{3}}=16$

Evaluate each expression.
10. $\log _{4} 64$
11. $\log _{2} 64$
12. $\log _{100} 100,000$
13. $\log _{5} 625$
14. $\log _{27} 81$
15. $\log _{25} 5$
16. $\log _{2} \frac{1}{128}$
17. $\log _{10} 0.00001$
18. $\log _{4} \frac{1}{32}$
\qquad
\qquad
\qquad

Integrated Math 3

Chapter 6 Section 1 Study Guide and Intervention (continued)
 Logarithms and Logarithmic Functions

Graphing Logarithmic Functions The function $y=\log _{b} x$, where $b \neq 1$, is called a logarithmic function. The graph of $f(x)=\log _{b} x$ represents a parent graph of the logarithmic functions. Properties of the parent function are described in the following table.

	1. The function is continuous and one-to-one.
Parent function of	2. The domain is the set of all positive real numbers.
Logarithmic Functions,	3. The y-axis is an asymptote of the graph.
$f(x)=\log _{b} x$	4. The range is the set of all real numbers.
	5. The graph contains the point $(1,0)$.

The graphs of logarithmic functions can be transformed by changing the value of the constants a, h, and k in the equation $f(x)=a \log _{b}(x-h)+k$.

Example: $\operatorname{Graph} f(x)=-3 \log _{10}(x-2)+1$.
This is a transformation of the graph of $f(x)=\log _{10} x$.

- $|a|=3$: The graph expands vertically.
- $a<0$: The graph is reflected across the x-axis.
- $h=2$: The graph is translated 2 units to the right.
- $k=1$: The graph is translated 1 unit up.

Exercises

Graph each function.

1. $f(x)=4 \log _{2} x$

2. $f(x)=4 \log _{3}(x-1)$

3. $f(x)=2 \log _{4}(x+3)-2$

